
Software Consultants

4 CROSSTALK The Journal of Defense Software Engineering February 2004

Lessons Learned From Software Engineering Consulting

The Software Technology Support Center (STSC) has provided consulting services for Department of Defense organizations since
the late 1980s. During the last 15 years, literally thousands of visits have been made to various organizations in an effort to help
them build and buy software better. This article talks about some of the lessons learned by two of the STSC’s many consultants.

During the past years, many Software
Technology Support Center (STSC)

consultants have conducted program
reviews and provided consultations for
numerous Department of Defense (DoD)
programs. After having observed many
different organizations and analyzed their
problems, certain patterns emerge. One of
these is that there really are not any new
problems. In almost all organizations that
we visit, we hear, as part of the briefing,
“We have unique problems here.” It is dif-
ficult not to smile. In almost 100 percent
of the cases, the problems are neither
unique nor even difficult to uncover.

The Problems
The problems organizations have are usu-
ally grouped into the following categories:
• Requirements.
• Schedule.
• People.
According to G. Weinberg, “No matter
how it looks at first, it’s always a people
problem” [1]. Of course, it is a bit sim-
plistic to say that it’s always a people prob-
lem. All problems are related to people.
However, certain types of problems, while
people-related, are actually specific to
requirements and schedule.

Requirements Problems
It comes as no secret to developers that
requirements problems are common in
almost every large project. It should come
as no secret to managers, either. However,
we are still attempting to build software by
using models that require exact require-
ments. While organizations often speak
glowingly of iterative and spiral models,
and of the Rational Unified Process, the
software continues to be built using water-
fall models, at least from a high level. For
one thing, money tends to trickle down in
a single lump sum, at least in terms of a
high-level budget.

Unfortunately, budgets often are set
and programs are funded prior to a full
understanding of the correct require-
ments. Requirements issues continue to

plague projects, often past the coding
phase and well into testing, integration,
and even sustainment [2, 3].

The simple rule is this: Expect to have
incomplete requirements well into design,
and often even well past it. To mitigate
this risk, these obvious actions can be
taken:
• Use a life-cycle model that permits iter-

ative requirements gathering and incre-
mental releases. In most projects, soft-
ware needs to be developed and deliv-
ered in small increments. Yes, this often
increases the cost. However, as we have
learned many times, you will have to
throw away at least one release – so do
not make the final copy the throwaway
[4]! It is usually not critical that the first
version of the software is correct; it is
probably not going to be, and you are
going to end up throwing it away. It is
much more important that the last ver-
sion is correct.

• Management must be able to shift,
reallocate, and if necessary request
additional budget as requirements are
eventually ferreted out and document-
ed. Early in the requirements process,
it is difficult to know the extent of the
complete requirements; you are unlike-
ly to know the implementation cost.
The old way – padding the budget in
hope of covering unforeseen require-
ments – has proven inadequate.
Allowing the budget to grow as
requirements expand allows ramping-
up of the initial version or iteration of
the development, with room (and
money) to grow as needed.

Schedule Problems
One of the authors recently attended a
software estimation workshop that cov-
ered a few well-known rules of thumb in
the cost and schedule estimation world.
One is that the average programmer pro-
duces 100 lines of code per month.
Another is that by taking the cube root of
the lines of code and multiplying by 3, you
can estimate the basic schedule of a proj-

ect in months.
For example, a project estimated at

100,000 lines of code (LOC) would take
approximately 1,000 staff months
(100,000 divided by 100). The cube root
of 1,000 is 10, and multiplying this by 3
equals a nominal time schedule of 30
months. (Again, these are very rough rules
of thumb – and good software developers
will have more accurate and validated rules
for their particular organization. Still, as
general rules of thumb, they have been
independently discovered and validated
many times).

These rules of thumb can be used to
establish a rough estimation of man
months and time, given a reasonably good
estimate of code required. One premise of
these rules is that the cited nominal sched-
ule cannot easily be shortened. The multi-
plier 3 used in the example varies among
schedule estimation experts. However,
most experts agree that anything below a
multiplier of 2.25 creates an impossible
schedule. In other words, if you know the
line-of-code estimate of the project, it is
relatively easy to establish a minimal
schedule, which according to leading
experts, cannot be lowered. This permits a
relatively easy idiot test of the schedule.

The remarkable thing is that many
projects do not have rough estimates of
LOC (or function points, or some other
size measurement), and therefore cannot
justify (or even explain) their schedules. If
your project has a schedule (and delivery
date) dictated by anything other than a
reliable (size, schedule, and cost) estima-
tion method, then you are likely to have an
impossible schedule. Just because the soft-
ware is needed by a certain date does not
imply that it can be ready by that date.

Develop an understanding and respect
for the complexities of software develop-
ment. This understanding is invaluable in
comprehending the challenges of soft-
ware estimation. Have you ever noticed
how simple things are, if you are not the
one actually doing the work? While
remodeling their house, the wife of one of

Theron R. Leishman
Software Technology Support Center/Northrop Grumman

Dr. David A. Cook1

AEgis Technologies Group



the authors considered many of the tasks
associated with the remodeling as simple, lit-
tle projects. Such simple, little projects
included moving a load-bearing wall and
extending an exterior wall to make rooms
larger. The author’s wife could not under-
stand why the project schedule and budget
were so large. These are, after all, simple,
little projects! Simple – but only in the
mind of a person who does not under-
stand the principles of construction and
will not be doing the work. Software devel-
opment is like this!

Program/project managers and cus-
tomers of software-intensive systems
need to understand that software develop-
ment is not a simple, little project. Estimates
and schedules developed using sound
software estimation processes and
approaches should be respected by man-
agers and customers alike, and not ran-
domly adjusted due to whims and desires
of external influences.

As a final note, Brooks Law [4] (which
paraphrased, says that adding additional
people to a late software project only
makes it later) does not just apply to
adding people. Reorganization, changing
contractors, or reassigning personnel in a
late project will most likely not improve
the situation. However, it will provide a
convenient excuse for management when
things start to fail!

When the schedule starts to slip in a
major way, there exist only two viable
solutions. First, change the schedule.
Second, reassess the requirements and
provide less functionality. Of course, a
poorly designed system that is into devel-
opment or testing cannot easily have func-
tionality removed without major recoding.
Therefore, often the only viable solution is
to change the schedule.

People Problems
As consultants at the STSC, the authors
have participated in many programs’
reviews. In addition, we have been asked
to consult and provide help for many pro-
grams. If there is one common theme that
runs throughout all of the problems we
have examined, it is this: Bad management
(and bad management decisions) can crip-
ple even the best programs. The interest-
ing thing is that in literally all of the con-
sultations in which we have participated,
the problems are known by the folks in the
trenches. Bad management decisions, unrea-
sonable (and impossible) demands, and
poor staffing decisions could easily be dis-
covered by asking developers.

Unfortunately, developers often do
not have an avenue to anonymously report
problems and/or concerns. Afraid of

complaining (and equally afraid of retribu-
tion) the developers gripe among them-
selves, but have no way to resolve the con-
flicts. When the problems become severe
enough, outside consultants are called in,
discover the problems, and summarize
and report to management. The interest-
ing thing is that management is often
aware of the problem and typically makes
such comments as, “We knew there were
issues, but didn’t know how severe the
problems were.” Unfortunately, by the
time consultants are called, the problems
are usually so severe that significant
opportunities have been lost.

Do not be afraid of the truth! We have
experienced some programs where it was
apparent that the program mangers did
not really want to hear the truth. They
were content to manage the program with
their heads in the sand. This type of pro-
gram management is sure to kill almost
any program.

To put it simply, not only are people
your most important resource, but also
they are your source of information.
Managers, you need to set up avenues for
your developers to voice issues and
address concerns. Some of these avenues
need to be anonymous. If you can con-
vince your developers that valid com-
plaints and problems are going to be
addressed – with no fear of retribution –
then you will have a handle on learning
what the problems are.

Other Ways to Improve Your
Chance of Success
As consultants, we are always amazed that
the problem, while seemingly hidden from
the program, is almost blindingly obvious
to an outsider. This observation and oth-
ers lead to the following solutions.

Do Not Forget the Simple Things
Once you successfully step back from the
problem to observe, it is amazing how
often the solutions rely on simple things.
Past issues of CrossTalk have covered
the many simple things necessary to man-
age a program: risk management, require-
ments management, and configuration
management [2, 3, 5]. Not that any of
these topics are simple (far from it), but it
is a simple fact that most programs will
not succeed unless you have implemented
risk management, requirements manage-
ment, and configuration management.

Yet as consultants, we often see pro-
grams that are ignoring very fundamental
areas. Someone once said of metrics that
“they don’t have to be 100 percent right to
be useful.” Well, when it comes to manag-

ing your risks, requirements, and configu-
ration , you do not have to be 100 percent
correct to be useful. As long as you man-
age with the right goals in mind, your proj-
ect has a much better chance of succeed-
ing [6].

Do Not Be Afraid to Ask for Help
As consultants, we often find that a major
problem in programs is that many levels
of the development effort, from program-
mers to upper management, feel that it
will make them look bad if they ask for
help. Managers do not want to admit that
they do not have a handle on all facets of
their program. Developers do not want to
admit that they are not absolute masters of
the nuances of either the development or
target environment. The problem is root-
ed in the fact that most DoD projects are
different from prior projects, so managers
and developers alike do not have prior
projects to make comparisons.

The solution is to find someone with
experience. Experienced developers know
that having an experienced program man-
ager improves the chances of successfully
completing a project on time and under
budget. Unfortunately, experience comes
from two sources – good experience, and
bad experience. While there is certainly an
argument to be made that a bad experi-
ence teaches very good lessons, nobody
wants bad experiences on their project. To
find others with good experience you have
to admit that you need help. This is often
easier to do with an impartial, outside
observer than with peers.

Impartial observers do not necessarily
have to come from outside your company
– only from outside of your immediate
group. In most large organizations, you
can find mentors or other sources of help.
This type of cross-pollenization not only
helps your group, but can also help the
entire organization by sharing viewpoints
and experience.

Do not be afraid to request (and in
some cases, demand) necessary training.
Having new tools and languages do not
help if your people do not know how to
effectively utilize them.

Call In an Outsider
When you are deeply part of the problem,
sometimes you cannot step back far
enough to see the solution. In many soft-
ware projects, independent verification
and validation (IV&V) is used to assure
quality. However, IV&V is usually called in
after the software is finished. It helps,
instead, to have an outside observer assist
prior to program completion. Some proj-
ects are like this scene in Winnie-the-Pooh:

February 2004 www.stsc.hill.af.mil 5

Lessons Learned From Software Engineering Consulting



Here is Edward Bear, coming
downstairs, bump, bump, on the
back of his head, behind
Christopher Robin. It is, as far as
he knows, the only way of coming
downstairs, but sometimes he feels
that there really is another way, if
only he could stop bumping for a
moment and think of it. [7] 

We could often solve our problems if
only we could stop banging our heads
against a wall and think about it. However,
without a truly objective outside observer,
we often cannot see how to stop banging
our heads.

It is a well-known fact that outside
consultants are more influential. This feel-
ing goes back to the days of the Bible:
“Prophets are honored by everyone,
except the people of their hometown and
their own family” [8]. Outside observers
are often useful in getting across the same
message that you have been trying to con-
vey for years – their status as an outsider
gives them the credibility to get your mes-
sage across.

As with outside observers, mentors,
trainers, and expert advice, consultants can
be used to help you over the rough spots. The
cost of hiring a consultant is often paid
back many-fold by the savings in prevent-
ing rework.

Summary
Are these guidelines enough to keep your
program on track? Of course not! In real-
ity, they are at best, general guidelines.
They are based on an examination of
many software projects under varying
constraints. Many important issues such as
design and implementation have not been
covered – these usually are not major
issues that the STSC sees. Other issues
such as testing and verification and valida-
tion are very important, but the authors
feel these issues have been adequately cov-
ered in other CrossTalk articles.

We do feel that the above guidelines
are valid advice that might help you in
your project. Certainly, software develop-
ment is far too complex to be summed up
in a few so-called simple rules.
• Have a strong risk management and

risk mitigation plan.
• Implement configuration manage-

ment.
• Use risk management and configura-

tion together to proactively predict
upcoming changes, thus mitigating
major cost and schedule impacts.

• Focus on the product and quality, and
modify the process to accommodate
the needs of your program.

Do not be afraid to ask for help – it is
far easier to learn from the experiences of
others than to be forced to repeat all of the
same mistakes. Also it is usually far cheap-
er to use a consultant’s experience to help
you avoid mistakes and errors.◆

References
1. Weinberg, Gerald M. The Secrets of

Consulting. New York: Dorset House,
1995.

2. Leishman, Theron R., and Dr. David
A. Cook. “Requirements Risk Can
Drown Software Projects.” Cross-

Talk Apr. 2002: 4-8.
3. Van Buren, Jim, and Dr. David A.

Cook. “Experiences in the Adoption
of Requirements Engineering
Technologies.” CrossTalk Dec.
1998: 3-9.

4. Brooks Jr., Frederick P. The Mythical
Man-Month, Anniversary Edition.

New York: Addison-Wesley, 1995.
5. Leishman, Theron, and Dr. David A.

Cook. “But I Only Changed One Line
of Code!” CrossTalk Jan. 2003:
20-23.

6. Cook, Dr. David A. “Confusing
Process and Product: Why the Quality
Is Not There Yet!” CrossTalk July
1999: 27-29.

7. Milne, A. A. The Complete Tales of
Winnie-the-Pooh. 1926. Penguin USA,
Oct. 1996.

8. The Bible. Clear English Version,
Matthew 13:57.

Note
1. At the time this article was written, Dr.

David A. Cook was the principle engi-
neering consultant for Shim
Enterprise, Inc., and under contract
for the U.S. Air Force Software
Technology Support Center.

About the Authors

Software Consultants

6 CROSSTALK The Journal of Defense Software Engineering February 2004

David A. Cook, Ph.D.,
is a senior research sci-
entist at AEgis Tech-
nologies Group, Inc.,
working as a verifica-
tion, validation, and

accreditation agent in the modeling and
simulations area. He is currently the
modeling and simulation liaison between
the Missile Defense Agency and the
Airborne Laser System Program Office.
Previously, he was the principal engi-
neering consultant for Shim Enterprise,
Inc., and under contract for the U.S. Air
Force Software Technology Support
Center for over six years. Cook has more
than 30 years experience in software
development and management. He was
formerly an associate professor at the
U.S. Air Force Academy, a former
deputy department head of the Software
Professional Development Program at
the Air Force Institute of Technology,
and has published numerous articles on
software-related topics. Cook has a doc-
torate degree in computer science from
Texas A&M University, and is an author-
ized Personal Software ProcessSM

instructor.

AEgis Technologies Group, Inc.
6565 Americas PKWY NE 
Albuquerque, NM 87110 
Phone: (505) 881-1003 
Fax: (505) 881-5003 
E-mail: dcook@aegistg.com

Theron R. Leishman
is a consultant currently
under contract with the
Software Technology
Support Center at Hill
Air Force Base, Utah.

Leishman has 19 years experience in
various aspects of software develop-
ment. He has successfully managed
software projects and performed con-
sulting services for the Department of
Defense, aerospace, manufacturing,
health care, higher education, and other
industries. This experience has provid-
ed a strong background in systems
analysis, design, development, project
management, and software process
improvement. He is a Level 2 Certified
International Configuration Manager
by the International Society of
Configuration Management, and is
employed by Northrop Grumman.
Leishman has a master’s degree in busi-
ness administration from the
University of Phoenix.

Software Technology 
Support Center
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056
Phone: (801) 775-5738
Fax: (801) 777-8069
E-mail: theron.leishman@hill.af.mil


